
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Placing an atom on a lattice (i.e. a crystal) gives a regular array of scatters. The (X-ray) waves scattered by these atoms can interfere in the same way as the (light) waves from the array 'scatters' in a diffraction grating.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

The condition for all scattered waves to interfere constructively:
$\underline{\lambda}=\mathrm{d} \sin \theta+\mathrm{d} \sin \theta=\underline{2 d \sin \theta}$ (Bragg's law)

In a 3-d crystal the atoms are arranged in 'planes'. The 'incident' and 'scattered' beam directions must be coplanar with the 'normal' to the plane (N). \qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad

The lattice is described by 3 axes: a, b, c. Each 'plane' must intercept these axes. The plane intercepts the axes at $1 / 4 a, 1 / 2 b, c$.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
Real crystal structure $\mathrm{CsCl} \quad \mathrm{a}=4.11 \AA \AA, \lambda=1.54$ Calculate: $\mathrm{d}_{(\mathrm{hkl})}$ and θ_{hkl} for the following (hkl)

hkl	d	θ	2θ
100			
110			
111			
200			

\qquad
\qquad

- PaNalytical			
Lattice Planes			
Real crystal structure $\mathrm{CsCl} \quad \mathrm{a}=4.11 \AA, \lambda=1.54$ Calculate: $\mathrm{d}_{(\mathrm{hkl})}$ and θ_{hkl} for the following (hkl)			
hkl	d	θ	2θ
100	4.11	10.798	21.596
110	2.91	15.343	30.686
111	2.37	18.935	37.870
200	2.06	22.006	44.012

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad

\qquad
\qquad

To summarize:

$h k l$	d	2θ	l
100	$4.11 \AA$	21.6°	weak
110	$2.91 \AA$	30.69°	strong
111	$2.373 \AA$	37.87°	weak
200	$2.055 \AA$	44.01°	strong
\downarrow from lattice			

Crystal structure \square
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad

Summary
The diffraction pattern is like a finger print of the crystal structure: \Rightarrow d values reflect the unit cell parameters ('grid') \Rightarrow intensities reflect the atoms/molecules ('building blocks')

